14 research outputs found

    Improved semiclassical density matrix: taming caustics

    Get PDF
    We present a simple method to deal with caustics in the semiclassical approximation to the thermal density matrix of a particle moving on the line. For simplicity, only its diagonal elements are considered. The only ingredient we require is the knowledge of the extrema of the Euclidean action. The procedure makes use of complex trajectories, and is applied to the quartic double-well potential.Comment: 20 pages, 7 figures. Revised version, accepted for publication in Phys. Rev.

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research

    E587 Antigen Is Upregulated by Goldfish Oligodendrocytes After Optic Nerve Lesion and Supports Retinal Axon Regeneration

    No full text
    The properties of glial cells in lesioned nerves contribute quite substantially to success or failure of axon regeneration in the CNS. Goldfish retinal axons regenerate after optic nerve lesion (ONS) and express the L1-like cell adhesion protein E587 antigen on their surfaces. Goldfish oligodendrocytes in vitro also produce E587 antigen and promote growth of both fish and rat retinal axons. To determine whether glial cells in vivo synthesize E587 antigen, in situ hybridizations with E587 antisense cRNA probes and light- and electron microscopic E587 immunostainings were carried out. After lesion, the goldfish optic nerve/tract contained glial cells expressing E587 mRNA, which were few in number at 6 days after ONS, increased over the following week and declined in number thereafter. Also, E587-immunopositive elongated cells with ultrastructural characteristics of oligodendrocytes were found. Thus, glial cells synthesize E587 antigen in spatiotemporal correlation with retinal axon regeneration. To determine the functional contribution of E587 antigen, axon-oligodendrocyte interactions were monitored in co-culture assays in the presence of Fab fragments of a polyclonal E587 antiserum. E587 Fabs in axon-glia co-cultures prevented the normal tight adhesion of goldfish retinal growth cones to oligodendrocytes and blocked the preferential growth of fish and rat retinal axons on the oligodendrocyte surfaces. The ability of glia in the goldfish visual pathway to upregulate the expression of E587 antigen and the growth supportive effect of oligodendrocyte-associated E587 antigen in vitro suggests that this L1-like adhesion protein promotes retinal axon regeneration in the goldfish CNS

    Molecular Characterization of E587 Antigen : an Axonal Recognition Molecule Expressed in the Goldfish Central Nervous System

    No full text
    The E587 antigen (Ag) is a 200-Kd membrane glycoprotein originally identified by a monoclonal antibody on new and regenerating retinal ganglion cell axons in the adult goldfish. We report the isolation of cDNAs encoding the E587 Ag and identify it as a member of the L1 family of cell adhesion molecules (CAMs). The predicted amino acid sequence of E587 Ag shows an approximately equal identity (40%) to mouse L1, chick neuron glia CAM, and chick neuron glia-related CAM. Although the overall similarity is low, there is a high conservation of structural domains and specific sequence motifs.Wholemount in situ hybridizations were performed on goldfish between 34 hours and 3 days postfertilization (pf). A dramatic increase in E587 Ag mRNA was observed between 34 and 48 hours pf. The expression of E587 Ag mRNAin neurons shortly precedes axonogenesis. A marked decrease in expression occurs by 3 days pf, when the axonal scaffold has already been established. Wholemount immunohistochemistry on embryos demonstrates expression of E587 Ag on all major tracts.E587 Ag is absent from mature retinal ganglion cell axons, but its expression is induced by optic nerve transection. A corresponding induction of E587 Ag mRNA in retinal ganglion cells is shown by in situ hybridization. Furthermore, E587 Ag mRNAwas detected in the optic nerve, which suggests that nonneuronal cells also express this molecule.E587 Ag was previously shown to promote retinal axon fasciculation and outgrowth in young fish and to mediate axon glial interactions in vitro. The expression pattern and developmental regulation of E587 Ag in the central nervous system, its reexpression in retinal ganglion cells following optic nerve transection, and its relation to the L1 family indicate that E587 Ag functions as a cell recognition molecule important during axonal growth and regenera tion. J. Comp. Neurol. 377:286 297, 1997

    DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters.

    No full text
    The spatial and temporal organization of DNA replication was investigated in living cells with a green fluorescent protein fusion to the DNA polymerase clamp PCNA. In situ extractions and photobleaching experiments revealed that PCNA, unlike RPA34, shows little if any turnover at replication sites, suggesting that it remains associated with the replication machinery through multiple rounds of Okazaki fragment synthesis. Photobleaching analyses further showed that the transition from earlier to later replicons occurs by disassembly into a nucleoplasmic pool of rapidly diffusing subcomponents and reassembly at newly activated sites. The fact that these replication sites were de novo assembled in close proximity to earlier ones suggests that activation of neighboring origins may occur by a domino effect possibly involving local changes in chromatin structure and accessibility

    Rapid three-dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development

    No full text
    We report an accurate method for studying the functional dynamics of the beating embryonic zebrafish heart. The fast cardiac contraction rate and the high velocity of blood cells have made it difficult to study cellular and subcellular events relating to heart function in vivo. We have devised a dynamic three-dimensional acquisition, reconstruction, and analysis procedure by combining (1) a newly developed confocal slit-scanning microscope, (2) novel strategies for collecting and synchronizing cyclic image sequences to build volumes with high temporal and spatial resolution over the entire depth of the beating heart, and (3) data analysis and reduction protocols for the systematic extraction of quantitative information to describe phenotype and function. We have used this approach to characterize blood flow and heart efficiency by imaging fluorescent protein-expressing blood and endocardial cells as the heart develops from a tube to a multichambered organ. The methods are sufficiently robust to image tissues within the heart at cellular resolution over a wide range of ages, even when motion patterns are only quasiperiodic. These tools are generalizable to imaging and analyzing other cyclically moving structures at microscopic scales

    In vivo dynamics of axon pathfinding in the Drosophila CNS: A time-lapse study of an identified motoneuron

    No full text
    We developed a system for time-lapse observation of identified neurons in the central nervous system (CNS) of the Drosophila embryo. Using this system, we characterize the dynamics of filopodia and axon growth of the motorneuron RP2 as it navigates anteriorly through the CNS and then laterally along the intersegmental nerve (ISN) into the periphery. We find that both axonal extension and turning occur primarily through the process of filopodial dilation. In addition, we used the GAL4-UAS system to express the fusion protein Tau-GFP in a subset of neurons, allowing us to correlate RP2's patterns of growth with a subset of axons in its environment. In particular, we show that RP2's sharp lateral turn is coincident with the nascent ISN. (C) 1998 John Wiley & Sons, Inc
    corecore